The reason why GPT-4 fine-tuning is needed for this research is that GPT-4, compared to GPT-3.5, possesses stronger language comprehension and generation capabilities, enabling it to better handle complex scientific data and interdisciplinary knowledge. Research on constructing dynamic knowledge bases involves a large amount of specialized terminology and cross-disciplinary content, and fine-tuning GPT-4 ensures that the model generates reports, analyzes data, and provides recommendations with greater precision and professionalism. Additionally, GPT-4 fine-tuning can help optimize research designs and offer more efficient solutions. Given the limitations of GPT-3.5 in handling complex tasks, this research must rely on GPT-4's fine-tuning capabilities to ensure the reliability and innovation of the research outcomes.
Dynamic Knowledge
Experimenting with innovative knowledge updating and fusion mechanisms.
Knowledge Fusion
Evaluating system stability and efficiency in knowledge updates.
System Stability
Comparative analysis against traditional knowledge management methods.